Original Russian Text Copyright © 2001 by Karpov, Platonov.

Generation of Chloropolyfluoromethylene-1-indanyl Cations and Their Isomerization into Chloropolyfluoromethylindenyl Cations*

V. M. Karpov and V. E. Platonov

Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, pr. Akademika Lavrent'eva 9, Novosibirsk, 630090 Russia

Received June 2, 2000

Abstract—1-Chlorooctafluoro-3-methylene-1-indanyl, 3-(chlorofluoromethylene)heptafluoro-1-indanyl, and 2- and 3-(dichloromethylene)heptafluoro-1-indanyl cations were generated from the corresponding dihalomethyleneindans in the system SbF₅–SO₂ClF. Isomerization of these cations yields thermodynamically more stable polyfluoromethylindenyl cations with chlorine atoms in the five-membered ring.

We previously reported [1, 2] on the generation of perfluorinated alkylindenyl and alkylideneindanyl cations. Unlike antiaromatic indenyl cation whose relative stability is lower than that of its analog with an open π system, perfluoroalkylindenyl cations are thermodynamically more stable than isomeric perfluoroalkylideneindanyl systems [2]. With the goal of elucidating the effect of chlorine and fluorine atoms on the relative stability of haloalkylindenyl and haloalkylideneindanyl cations in the present work we studied generation of chlorine-containing polyfluoromethylene-1-indanyl cations with an open π system and their isomerization into polyfluorinated methylindenyl cations having a closed π system.

We have found that dissolution of 3-chloronona-fluoro-1-methyleneindan (I) in a mixture of SbF₅ with SO₂ClF at low temperature gives rise to 1-chloroocta-fluoro-3-methylene-1-indanyl cation (II). As the temperature rises, cation II undergoes isomerization into 3-chlorooctafluoro-1-methylindenyl cation (III). Likewise, from a mixture of (Z)- and (E)-1-(chlorofluoro-methylene)octafluoroindans IV we obtained (Z)- and (E)-3-(chlorofluoromethylene)heptafluoro-1-indanyl cations V and VI whose thermal isomerization also gave ion III (Scheme 1). The isomerization of V and VI into III involves intermediate formation of perfluoro-1-methylindenyl cation (VII) in which the 3-fluorine atom is replaced by chlorine through the

reaction with antimony chloride fluorides generated during the process (Scheme 1). By special experiment we showed that on addition of SbCl₅ (~0.35 mol per mole of the precursor) to SbF₅ cation **VII** is converted into ion **III**. On the other hand, the isomerization of perfluoro(3-methylene-1-indanyl) cation (**VIII**) to ion **VII** is faster than its transformation into ion **II**. Perfluoro(1-methyleneindan) (**IX**) in the system SbF₅-SbCl₅-SO₂ClF at -70°C gives rise to both ion **VII** and methyleneindanyl cation **VIII**. As the temperature rises to -40°C, cation **VIII** undergoes isomerization to ion **VII** without formation of ion **II**. The transformation of ion **VII** into **III** is complete when the solution is kept for 1 h at room temperature (Scheme 1).

3-(Dichloromethylene)heptafluoro-1-indanyl cation (XI) was generated from 1-(dichloromethylene)octafluoroindane X in the system SbF₅-SbCl₅-SO₂ClF. At room temperature the 1-fluorine atom in XI is replaced by chlorine to afford 1-chloro-3-dichloromethylenehexafluoro-1-indanyl cation (XII). The latter is then converted into 2,3-dichloroheptafluoro-1methylindenyl cation (XIII). In the absence of SbCl₅ the isomerization of **XI** into **XIII** proceeds at a considerably lower rate. When a solution containing ion **XI**, prepared from compound **X** and SbF₅ in SO₂ClF, was kept for 36 h at room temperature, a mixture of ions III and XI-XIII was formed. After 5.5 days, the solution contained approximately equal amounts of cations III and XIII and traces of XII. After 4.5 months, the ratio of ions **XIII** and **III** was about 2:1, and after 11 months, ion III was almost completely transformed into XIII (Scheme 2).

^{*} This study was financially supported by the Russian Foundation for Basic Research (project no. 99-03-32876).

Scheme 1.

Scheme 2.

An analogous pattern was also observed with 2-(dichloromethylene)octafluoroindan (XIV) as precursor of cationic species. In the system SbF₅–SO₂ClF at low temperature compound XIV gives rise to 2-(dichloromethylene)heptafluoro-1-indanyl cation (XV). On keeping for 11 days at room temperature, a mixture of ion XV (major component), 1-chloro-2-dichloromethylenehexafluoro-1-indanyl cation (XVI), 1-chlorooctafluoro-2-methylindenyl cation (XVII), and 1,3-dichloroheptafluoro-2-methylindenyl cation (XVIII) was obtained. After 11 months, the solution contained the same ions, but cations XVIII and XVIII

were the major components (ratio ~1:4; Scheme 3). We showed previously [3] that heating of a solution of compound **XIV** in the system SbF₅–SO₂ for 6 h at 110°C leads to complete isomerization of ion **XV** to cation **XVIII**.

The reaction of 2-dichloromethylene-1,1,3,3-tetra-chlorotetrafluoroindane (**XIX**) with SbF₅ in SO₂ generates 2-dichloromethylene-1,1,3-trichlorotetra-fluoro-1-indanyl cation (**XX**) [4]; in SO₂ClF, ions **XX** and **XVI** are formed. Raising the temperature of the SO₂ClF solution to \sim 20°C leads to replacement of all chlorine atoms in position 3 of ion **XX** by

Scheme 3.

fluorine, yielding cation **XVI**. As compared to **XV**, ion **XVI** is relatively rapidly converted into methylindenyl cation **XVIII**. At room temperature the transformation is complete in 3 months. According to the $^{19}\mathrm{F}$ NMR spectrum, the resulting mixture contains a small amount of 2-chloroundecafluoro-2-methylindan (**XXI**). The latter is formed as the major product when compound **XIX** was kept in the system SbF₅–SO₂ClF total of 14 months.

Thus, chlorine-containing polyfluoromethylindenyl cations III, XIII, and XVIII which have a closed π system are thermodynamically more stable than isomeric methyleneindanyl ions with an open π

system; The stability series is as follows: III > II, V, VI; XIII > XII; XVIII > XV.

The structure of the generated cationic species was derived from their ¹⁹F NMR spectra and was proved by hydrolysis of the corresponding salts (with ions **III** and **XI**—**XIII**). Treatment with water of solutions containing cations **III** and **XIII** gave, respectively, perfluoro(3-methylinden-1-one) (**XXII**) and 2-chloroheptafluoro-3-methylinden-1-one (**XXIII**). The hydrolysis of cation **XII** yields 3-(dichloromethylene) hexafluoro-1-indanone (**XXIV**). Ketone **XXIV** was formed in a mixture with 3-(dichloromethylene)tetrafluoro-1,2-indandione (**XXV**) by treatment with water

Scheme 4.

III
$$\xrightarrow{H_2O}$$
 $\xrightarrow{5}$ $\xrightarrow{4}$ $\xrightarrow{F^2}$ $\xrightarrow{F^2}$ \xrightarrow{KXIII} $\xrightarrow{KXIII$

of a SbF₅ solution containing ion **XI** and no SO₂ClF (Scheme 4).

The ¹⁹F NMR spectra of cations VII, VIII [2], XV [3], XVII, XVIII, and XX [4] were consistent with those reported previously. The spectra of methylindenyl cations III and XIII (Table 1) are analogous to that observed for ion VII [5], and the spectra of methyleneindanyl cations II, V, VI, XI, XII, and XVI (Table 2) resemble those of ions VIII [2] and XX [4]. In all cases, the signals from fluorine atoms attached to the sp^2 -hybridized carbon atoms are displaced downfield relative to the corresponding signals of their neutral precursors. The chemical shifts of these fluorine nuclei are likely to reflect qualitaitve pattern of π -charge distribution over carbon atoms attached thereto: Linear correlations were found previously between the π -charges on carbon atoms and ¹⁹F chemical shifts for the other polyfluoroindenyl [2, 5] and perfluoro(3-alkylidene-1-indanyl) cations [2]. The most downfield fluorine signals are characterized by the greatest spin-spin coupling constants. In the spectra of benzyl-like methyleneindanyl cations, such signals are those from fluorine atoms located in the resonance (charge) positions, 1, 3', 5, and 7. It should be noted that J values of polyfluorinated benzyl-like [6] and arenonium ions [7] are considered to be related to direct participation of fluorine atoms in charge distribution and conjugation. The 4-F atom in ions II, V, and VIII occupies an off-resonance position, and the greater $J_{cis-3,4}$ (as in neutral precursors [8]) is likely to result from the short distance between the interacting nuclei rather than from positive charge distribution. It is also interesting that methylindenyl cations III, VII, and XIII having a cyclic π system are characterized by anomalously low coupling constants $J_{5,6}$ (<2 Hz) for fluorine atoms located *ortho* with respect to each other; by contrast, the $J_{5.6}$ values (17-21 Hz) of methyleneindanyl cations with an open π system are typical of *ortho*-fluorine atoms in a phenyl ring [9].

EXPERIMENTAL

The ^{19}F NMR spectra of salt solutions in SO₂ClF or SbF₅ and of solutions of neutral compounds in CCl₄ were recorded on Varian A-56/60A and Bruker WP-200SY spectrometers operating at 56.4 and 188.3 MHz, respectively; SO₂ClF (δ_F 262.8 ppm relative to C₆F₆) and C₆F₆ were used as internal references. The IR spectra were obtained on a UR-20 instrument from solutions in CCl₄. The UV spectra were measured on a Specord UV-Vis spectrometer using heptane as solvent. The elemental compositions

were determined by high-resolution mass spectrometry on an AEI-MS 902 instrument.

Compounds **I**, **IV** [8], **X**, **XIV** [10], and **XIX** [4] as precursors of cationic species were synthesized by known procedures.

1-Chlorooctafluoro-3-methylene-1-indanyl cation (II). A solution of 0.34 g of SbF₅ in ~0.3 ml of SO₂ClF was placed in an NMR ampule and cooled to ~70°C, and a solution of 0.13 g of compound I (molar ratio I–SbF₅ 1:4) in ~0.3 ml of SO₂ClF was added. The mixture was stirred by shaking, and the ¹⁹F NMR spectra were recorded which contained signals of ion II. The latter did not change in the temperature range from ~60 to ~30°C. The solution was then kept for 2.5 h at ~3 to 5°C; its ¹⁹F NMR spectrum contained signals from cations II and III (ratio ~1:1); after 16 h, only signals of III were present in the spectrum.

(Z)- and (E)-3-(chlorofluoromethylene)hepta-fluoro-1-indanyl cations V and VI. A solution containing ions V and VI at a ratio of ~2:1 (according to the ¹⁹F NMR data) was prepared by the procedure described above from 0.14 g of compound IV and 0.36 g of SbF₅ (molar ratio 1:4) at -70 to -60°C. The ¹⁹F NMR spectrum recorded at -30°C (after raising the temperature to ~0°C for a short time) contained signals of cation VII (the ratio of ions V and VI was ~6:1). When the solution was kept for 0.5 h at 0-1°C, ions V and VI were completely converted into VII. After 16 h at -3 to 5°C, only signals of ion III were observed in the ¹⁹F NMR spectrum.

Transformations of perfluoro(1-methyleneindan) (IX) in the system SbF₅–SbCl₅. *a.* As described above, from 0.12 g of compound IX, 0.33 g of SbF₅, and 0.04 g of SbCl₅ (1:4:0.35) in SO₂ClF at -70°C a mixture of ions VII and VIII was generated. On raising the temperature to -40°C, the solution contained only ion VIII. The solution was than kept for 1.5 h at room temperature. According to the ¹⁹F NMR data, ion VIII was completely converted into ion III.

b. To a solution of 0.11 g of SbCl₅ in 1.54 g of SbF₅ at 20°C we added 0.33 g of compound **IX** (ratio **IX**–SbF₅–SbCl₅ 1:6.76:0.35), and the mixture was stirred and kept for 5 h at 20°C. According to the ¹⁹F NMR data, the resulting solution contained cation **III**. The solution was poured into ice water and treated with methylene chloride, the extract was dried over MgSO₄, and the solvent was removed. We obtained 0.27 g of a product which was subjected to vacuum sublimation at 45–50°C (15–20 mm) to isolate 0.21 g of ketone **XXII**. The product was identical to that described in [11].

Cation no.	Chemical shifts $\delta_{\rm F}$, ppm (relative to ${\rm C_6F_6}$)													
	CF ₃		2-F		3-F		4-F		5-F		6-F		7-F	
III VII [2] XIII	97.6 45.3 97.3 40.2 97.1			168.	3	98.3 110.5 94.5		20.4 20.7 20.0	70.8 79.5 67.1		63.6 66.2 63.8			
Cation no.	$^{19}\mathrm{F}$ coupling constants J_{ij} , Hz													
	1–2	1–7	2–3	2–4	2–5	2–6	2–7	4–5	4–6	4–7	5–6	5–7	6–7	
III VII [2] XIII	17 15	17 15 21	4	5 4	17 19	12 13	17 15	20 21 20	57 62 53	17 15 15	<1 <2 <1	11 11 11	10 11 11	

Table 1. ¹⁹F NMR spectra of polyfluorinated 1-methylindenyl cations III, VII, and XIII

3-(Dichloromethylene)heptafluoro-1-indanyl cation (XI) and 1-chloro-3-dichloromethylenehexafluoro-1-indanyl cation (XII). a. To a solution of 0.33 g of SbF₅ and 0.04 g of SbCl₅ in SO₂ClF we added at -75°C 0.13 g of compound X (ratio X-SbF₅- $SbCl_5$ 1:4:0.35), and the mixture was stirred. According to the ^{19}F NMR data, the mixture contained ion XI which did not change in the temperature range from -70 to -20°C. The mixture was kept for 100 min at 20-22°C; it contained cation XII and small amounts of ions XI and XIII. After keeping for a week at room temperature, only ion XIII was present in the solution. Its ¹⁹F NMR spectrum did not change on keeping the mixture for an additional 7 days. The solution was poured into water and was treated as described above to isolate 0.11 g of product XXIII which was purified by vacuum sublimation (110°C, 15 mm). Yield 0.06 g, mp 84-86°C (in a sealed capillary).

2-Chloroheptafluoroinden-1-one (XXIII). IR spectrum, v, cm⁻¹: 1755 (C=O), 1640 (C=C), 1500 (fluorinated aromatic ring). UV spectrum, λ_{max} , nm (log ϵ): 325 sh (3.35), 337 (3.45), 352 (3.38), 394 (3.16). Found: $[M]^+$ 303.9562. $C_{10}\text{ClF}_7\text{O}$. Calculated: M 303.9525.

b. A solution containing ions **XI** and **XII** (~1:3) was prepared from 0.28 g of compound **X**, following the above procedure. The mixture was poured into water and extracted with methylene chloride, and the extract was dried over MgSO₄ and transferred onto a watch glass. We thus obtained 0.25 g of a mixture of compounds **X**, **XXIV**, and **XXV** at a ratio of 16:81:3 (according to the ¹⁹F NMR data).

c. A solution containing cation **XI** (¹⁹F NMR data) was obtained by mixing at room temperature 0.33 g of compound **X** and 1.45 g of SbF₅ (1:7). The mixture was poured into water to obtain 0.25 g of a mixture of compounds **X**, **XXIV**, and **XXV** at a ratio of 1:2:2. It was separated by column chromatography on silica gel (using carbon tetrachloride as eluent) to isolate 0.03 g of initial compound **X** and 0.08 g of ketone **XXIV**. The subsequent elution with CH₂Cl₂ gave 0.09 g of diketone **XXV** which was purified by vacuum sublimation at 100°C (15–20 mm), mp 99–100.2°C.

3-(Dichloromethylene)hexafluoroindan-1-one (**XXIV**). IR spectrum, v, cm⁻¹: 1775 (C=O); 1610 (C=C); 1635, 1520, 1500 (fluorinated aromatic ring). UV spectrum, λ_{max} , nm (log ϵ): 250 (4.28), 263 sh (4.19), 273 sh (4.16), 285 sh (4.03), 332 (3.18). Found: $[M]^+$ 319.9224. $C_{10}Cl_2F_6O$. Calculated: M 319.9230.

3-(Dichloromethylene)tetrafluoroindan-1,2-dione (**XXV**). IR spectrum, ν , cm⁻¹: 1765, 1750 (C=O); 1575 (C=C); 1625, 1515, 1500 (fluorinated aromatic ring). UV spectrum, λ_{max} , nm (log ϵ): 273 sh (4.30), 282 (4.33), 349 (2.86). Found: $[M]^+$ 297.9186. $C_{10}Cl_2F_4O_2$. Calculated: M 297.9211.

d. Cation **XI** was generated from 0.13 g of compound **X** and 0.33 g of SbF₅ (1:4) in SO₂ClF at -40°C. The solution was then kept in a sealed ampule at room temperature, and the ¹⁹F NMR spectra were recorded. After 36 h, the mixture contained ions **III**, **XI**, **XII**, and **XIII** at a ratio of 32:20:40:8; after 5.5 days, approximately equal amounts of cations **III** and **XIII** and traces of ion **XII** were detected; after

Table 2.	¹⁹ F NMR spectra of polyfluorinated 2- and 1	3-methylene-1-indanyl cations II,	V, VI,	VIII, IX, XII, XV,	XVI,
and XX	and polyfluorinated ketones XXII-XXV				

Cation	Chemical shifts δ_F , ppm (relative to C_6F_6)												
or ketone no.	1-F	1-F 2-F		cis-3-F		trans-3-F	7	1-F	5-F	(6-F	7-F	
II		45.3		119.3		115.3	3	7.5	95.7	2	4.0	63.3	
${f V}$	149.			139.5				4.1	102.6		6.1	69.5	
VI	143.	8					135.3	4	8.3			6.1	71.1
VIII [2]	147.2			122.2		116.5		0.4	103.0	2	6.0	70.4	
XI	143.0	143.0 41.1				5	4.6	102.9	2	6.4	71.2		
XII	48.0		i i			5	1.9	96.2	2	5.1	64.9		
XV	150.0		54.1			3	4.7	61.1	2	6.6	55.4		
XVI				55.1			3	0.3	55.8	24.0		49.3	
XX [4]							2	9.9	53.6	2	1.4	43.8	
XXII	35.1			98.9 (CF ₃)				5.6	21.4		2.0	31.0	
XXIII					99.0 (CF ₃)				7.3	20.6	11.9		29.9
XXIV	50.7								2.9	24.8		4.5	28.0
XXV								4	2.4	24.9	1	3.6	26.9
Cation	$^{19}\mathrm{F}$ coupling constants J_{ij} , Hz												
or ketone no.	1–2	1–0	cis-3	1–4	1–5	1–6	1–7	4–5	4–6	4–7	5–6	5–7	6–7
II								23	~9	~7	19	51	15
\mathbf{V}	17	2	20	~9	35	~5	53	23	10	7	19	53	15
VI	17				~35		~50	~23	~10	~7	~19	~50	~15
VIII [2]	16	2	20	~9	34		~50	19	~10	~7	19	49	15
XI	19			9	36	4	58	21	10	7	21	54	17
XII								22	9	8	21	52	17
XV					15		52	22	12	13	20	31	21
XVI								20	9	12	17	30	19
XX [4]								21.5	9	13.5	20	28.5	20.5
XXII								19	5	14	16	12	20.5
XXIII								18	5	14	15	11	20
XXIV								19	7	16	18	12	20.5
XXV		L		L	<u> </u>	l	<u></u>	19	7	16	18	12	21

^a Cation **II**: $J_{2,trans-3} = 7$, $J_{cic-3,trans-3} = 64$, $J_{cic-3,4} = 67$ Hz; cation **V**: $J_{cic-3,4} = 89$ Hz; cation **VI**: $J_{2,trans-3} = 11$ Hz; cation **VIII**: $J_{2,trans-3} = 6$, $J_{cic-3,4} = 64$ Hz; cation **XXII**: $J_{2,3} = 21$, $J_{2,4} = 9$, $J_{2,6} = 15.5$, $J_{cic-3,4} = 20.5$ Hz; cation **XXII**: $J_{cis-3,4} = 22$ Hz.

4.5 months, the ratio of ions **XIII** and **III** was $\sim 2:1$; and after 11 months, the fraction of **XIII** was much greater than that of **III**.

1,3,3-Trichloro-2-dichloromethylenetetrafluoro-1-indanyl cation (XX) and 1-chloro-2-dichloromethylenehexafluoro-1-indanyl cation (XVI). A solution containing cation XX (19 F NMR data) was prepared at -50° C from 0.18 g of compound XIX and 0.38 g of SbF₅ (1:4) in SO₂ClF. The mixture was kept in a sealed ampule at room temperature. After 0.5 h, the solution contained cation XVI; after 4 days,

ions **XVI** and **XVIII** at a ratio of ~5:1; after 1.5 months, this ratio changed to ~1:4; and after 3 months, ions **XVI** and **XVIII** (**XVI** << **XVIII**) and a small amount of chloroindan **XXI** were present. After 7 months, the ratio of ions **XVIII** and **XXI** was 1.5:1; and after 14 months, only product **XXI** was detected, whereas cation **XVIII** disappeared. The mixture was poured into 5% hydrochloric acid, and the organic layer was separated and dried over MgSO₄. We isolated 0.11 g of chloroindan **XXI** with small impurities (according to the ¹⁹F NMR data).

- **2-Chloroundecafluoro-2-methylindan (XXI).** ¹⁹F NMR spectrum, δ_F , ppm: 94.6 (3F, CF₃), 71.9 (2F, 1-F_A and 3-F_A), 64.9 (2F, 1-F_B and 3-F_B, J_{AB} = 260 Hz), 24.0 (2F, 4-F and 7-F), 19.3 (2F, 5-F and 6-F). Found: $[M]^+$ 363.9467. $C_{10}ClF_{11}$. Calculated: M 363.9512.
- 2-(Dichloromethylene)heptafluoro-1-indanyl cation (XV). A solution containing ion XV was prepared from 0.13 g of compound XIV and 0.33 g of SbF₅ (1:4) in SO₂CIF at -50°C; its ¹⁹F NMR spectrum was recorded at -40°C, and the solution was kept in a sealed tube at room temperature. After 11 days, the ¹⁹F NMR spectrum contained signals from ion XV (major) and XVI-XVIII. After 11 months, the same ions were present, but cations XVII and XVIII (molar ratio ~1:4) prevailed.

REFERENCES

- 1. Karpov, V.M., Platonov, V.E., and Yakobson, G.G., *Tetrahedron*, 1978, vol. 34, no. 21, pp. 3215–3218.
- 2. Karpov, V.M., Platonov, V.E., Chuikov, I.P., and Shchegoleva, L.N., *Russ. J. Org. Chem.*, 1999, vol. 35, no. 1, pp. 80–84.
- 3. Karpov, V.M., Platonov, V.E., and Yakobson, G.G., *Izv. Akad. Nauk SSSR*, *Ser. Khim.*, 1978, no. 11, p. 2655.

- 4. Karpov, V.M., Platonov, V.E., and Yakobson, G.G., *Izv. Akad. Nauk SSSR*, *Ser. Khim.*, 1979, no. 9, pp. 2082–2087.
- 5. Karpov, V.M., Platonov, V.E., and Shchegoleva, L.N., *Russ. J. Org. Chem.*, 1998, vol. 34, no. 11, pp. 1660–1665.
- Olah, G.A. and Comisarov, M.B., J. Am. Chem. Soc., 1967, vol. 91, no. 11, pp. 2955–2961; Pozdnyakovich, Yu.V. and Shteingarts, V.D., J. Fluorine Chem., 1974, vol. 4, no. 3, pp. 283–316.
- 7. Shteingarts, V.D., *Usp. Khim.*, 1981, vol. 50, no. 8, pp. 1407–1436.
- Karpov, V.M., Platonov, V.E., Chuikov, I.P., and Yakobson, G.G., *J. Fluorine Chem.*, 1983, vol. 22, no. 5, pp. 459–473.
- Pushkina, L.N., Stepanov, A.P., Zhukov, V.S., and Naumov, A.D., *Zh. Org. Khim.*, 1972, vol. 8, no. 3, pp. 586–597; Matthews, R.S. and Preston, W.E., *J. Org. Magn. Reson.*, 1980, vol. 14, no. 4, pp. 258–263.
- 10. Karpov, V.M., Platonov, V.E., Stolyarova, T.A., and Yakobson, G.G., *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1981, no. 7, pp. 1586–1591.
- 11. Chuikov, I.P., Karpov, V.M., and Platonov, V.E., *Izv. Ross. Akad. Nauk, Ser. Khim.*, 1992, no. 6, pp. 1412–1418.